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High Performance Data Management – Bottlenecks

Ping                 ~40ms
Disk accesses ~15ms

• CPU – GHz
• Disk – up to 15ms latency
• Memory

– Performance – 70ns latency
– Predictability – multi-level caches
– Rapidly growing sizes
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Memory Matters

1 A. Ailamaki, et al. DBMSs on a modern processor: Where does time go? VLDB’99
2 R. Sites. It’s the memory, stupid! MicroprocessorReport, 10(10),1996 
3 K. Schlegel. Emerging Technologies Will Drive Self-Service Business Intelligence. Garter Report 2/08

• Is disk I/O1 still the bottleneck for traditionally data- 
intensive applications, e.g. databases1? 

• “It's the memory Stupid!” 2

OLTP
 DWH3

<
?

• Growth rates of main memory size 
have outstripped the growth rates of 
structured data in the enterprise

• Multiple GB main memory DB 
put memory performance on the spot

• Isn't memory performance constant ?
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Memory Performance – Characterization

• Dependent on Access pattern and word size performance differs up to  
2 orders of magnitude

100x

32GB data accessed total. Results for a Core i7 2.66GHz, DDR3 1666.
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Memory Performance – More Characteristics
• Peak performance requires parallel memory access

Throughput with increasing number of threads. 32GB of 64-bit words accessed total. 
Results for a Core i7 2.66GHz, DDR3 1666.
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Peak Memory Performance
• Required level of concurrency depends on the architecture

Throughput with increasing number of threads. 32GB of 64-bit words accessed total.
Results for an 8-core Sun Niagara, DDR2 533.
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RAM = Random Access memory ?

.

Aspect Performance impact

Access 
pattern

 18x sequential vs. random

  What do these results imply?

Data type 16x 128-bit vs. 8-bit words

Parallelism

   2x read vs. write

32x multithreaded vs. serial

Reason

 MTU
= Cache Line

Memory 
Controller
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The (Memory) Wall 4

.
Source: David Yen. Opening Doors to the MultiCore Era. MultiCore Expo 2006

2009: CPU cores

4 W.A.Wulf et al. Hitting the memory wall: implications of the obvious. SIGARCH - Computer Architecture News'95
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Overcoming the Memory Wall – Traditional Approaches

• Larger caches
– Specialized processors
– TPC-H top10: 6 run10 Itanium

• “Linearize” data structures
– For example matrix multiplication: store 1st matrix row-wise, 

2nd column-wise (memory is 1D)

1 2 3

7 8 9

4 5 6

1 4 7

3 6 9

2 5 8

1 2 3 7 8 94 5 6

1 2 3 7 8 94 5 6

XX è
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Latency & Bandwidth – historical Issues ?

Source: Terabyte Bandwidth Initiative. Craig Hampel - Rambus. HotChips'08
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Overcoming the Memory Wall – “Newer” Approaches

• Multithreading
– Run multiple (similar) jobs simultaneously è increased throughput

                an extreme example:

                                              But individual jobs won't get any faster =(
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Overcoming the Memory Wall – “Revolutionary” Approaches

• New parallel algorithms

   e.g. p-ary search 5,6

5 T. Kaldewey, J. Hagen, A. Di Blas, E.Sedlar. Parallel Search on Video Cards. USENIX Hotchips'09
6 A. Di Blas, T. Kaldewey. Data Monster. IEEE Spectrum 9/09 
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Why Search ?

Honestly, how many times a day do you visit

?
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Search – A Performance Problem ?

• Large dot-com's server farms handle millions    
of queries simultaneously
– High throughput is a “must have”
– Achieved through (massive) parallelism

• What are we waiting for ?
– Network latency
– Response time < sub-second      

è At the data source:  query < millisecond(s)  

Ping                 ~40ms
Disk accesses ~15ms
App. overhead     ?
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Our Goal

• Improve response time (latency) in the era of throughput oriented 
(parallel) computing.

Research Question ?

• How can we (algorithmically) exploit (memory) parallelism to 
improve response time (of search)?
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Binary Search

• How Do you (efficiently) search an index ?

• 1st name = whom    
you are looking for ?

• < , > ?
• Iterate

– Each iteration:  
#entries/2 (n/2)

– Total time:          
è log2(n)

• Open phone 
book ~middle
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Parallel (Binary) Search

• What if you have some friends (3) to help you ?

• Give each of them ¼ *

* You probably want to tear it a little more intelligent than that, e.g. at the binding ;-)

• Divide et impera !

– Each is using binary search takes log2(n/4)

– All can work in parallel è faster:  log2(n/4) < log2(n)

– 3 of you are wasting their time !
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P-ary Search

• Divide et impera !!

...

• It's a sorted list:
– Look at first and last entry of a subset
– If first entry < searched name < last entry

• Redistribute
• Otherwise … throw it away

– Iterate

• How do we know who has the right piece ?
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P-ary Search

• What do we get
• Each iteration: n/4                

è log4(n)

• Assuming redistribution      
time is negligible:                  
log4(n) < log2(n/4) < log2(n)

• But each does 2 lookups !
• How time consuming are 

lookup and redistribution ?

+

• Searching a database index can be implemented the same way
– Without destroying anything ;-)

memory 
access

synchronization

= =
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P-ary search - Implementation 

• Performance depends on target architecture
– # friends = threads / processor cores / vector

        Iteration 1)

        Iteration 2)

– Redistribution è synchronization cost
pthreads ($$), spinlock($), SIMD/vector (~0)

a b c d e f g h i j k l m n o p q r s t u v w x y z4 5 6 7 8 9

P0: g P1: g P2: g P3: g

 P0 P1 P2 P3: g

c d e f g h i j k
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• Performance depends on data structure
– Sorted lists require multiple lookups or memory gather   

è random accesses

P-ary search - Implementation 

a b c d e f g h i j k l m n o p q r s t u v w x y z4 5 6 7 8 9

P0: g P1: g P2: g P3: g

– Random memory accesses are slow
– Memory gather not (yet) available for vector units (SSE)
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• Performance depends on data structure
– B-trees group pivot elements

P-ary search - Implementation 

d g h i j k o p q r

4 c k s z

5 8 9 a b

6 7

...

P0P1P2P3

P0P1P2P3

– Linear memory accesses are fast
– Nodes can also be mapped to

• Cache Lines (CSB+ trees)
• Vectors (SSE)
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P-ary Search (SSE) vs. conventional algorithms

Searching a 512MB index with 134mill. 4-byte integer entries. Index stored as 4-wide (16-
wide) B-tree. Results for a Core i7 2.66GHz, DDR3 1666.
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P-ary Search (multi-core) vs. traditional (multi)-threading

Searching a 512MB index with 134mill. 4-byte integer entries. Index stored as 48-wide B-
tree. Results for a Core i7 2.66GHz, DDR3 1.6 GHz
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P-ary Search implemented on a GPU

Searching a 512MB index with 134mill. 4-byte integer entries. Index stored as 32-wide B-
tree. Results for a nVidia GTX 285 1.5GHz, GDDR3 1.2GHZ
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Predictable memory performance

• Measure latency of memory access using “rdtsc”
– random accesses take ~350 cycles
– Sequential accesses are hard to measure

• In a sequence they take ~2 cycles on average
• Intel optimization reference manual states

4 cycle latency for L1
• Applying these results to our search problem we get:

• The average case is much faster
– Not all search keys are found within the last iteration
– Multiple queries in sequence will result in Cache hits
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Conclusions

• Memory performance can differ by 2 orders of magnitude 
dependent on:
– access pattern: random/sequential, read/write
– word size
– concurrency(growing importance)

• Taking memory characteristics into account

– Improves performance
• p-ary search (concurrency, word size)

            works across architectures and data structures
• strcmp (word size)

– Allows to predict performance of memory bound apps
• based on their memory access pattern
• within +/- 5% of the worst case execution time
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Future Work

• Evaluate p-ary search with
– Wider vectors
– More cores

• Manage system performance for memory bound applications 
(databases), i.e. schedule queries 
– Based on resource requirements (using available metadata)
– With the “right” level of parallelism for a job

    

• Graduate soon ;-)
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